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a b s t r a c t 

Registration is a core component of many imaging pipelines. In case of clinical scans, with lower resolu- 

tion and sometimes substantial motion artifacts, registration can produce poor results. Visual assessment 

of registration quality in large clinical datasets is inefficient. In this work, we propose to automatically 

assess the quality of registration to an atlas in clinical FLAIR MRI scans of the brain. The method con- 

sists of automatically segmenting the ventricles of a given scan using a neural network, and comparing 

the segmentation to the atlas ventricles propagated to image space. We used the proposed method to 

improve clinical image registration to a general atlas by computing multiple registrations - one directly 

to the general atlas and others via different age-specific atlases - and then selecting the registration that 

yielded the highest ventricle overlap. Finally, as an example application of the complete pipeline, a vox- 

elwise map of white matter hyperintensity burden was computed using only the scans with registration 

quality above a predefined threshold. Methods were evaluated in a single-site dataset of more than 10 0 0 

scans, as well as a multi-center dataset comprising 142 clinical scans from 12 sites. The automated ven- 

tricle segmentation reached a Dice coefficient with manual annotations of 0.89 in the single-site dataset, 

and 0.83 in the multi-center dataset. Registration via age-specific atlases could improve ventricle over- 

lap compared to a direct registration to the general atlas (Dice similarity coefficient increase up to 0.15). 

Experiments also showed that selecting scans with the registration quality assessment method could im- 

prove the quality of average maps of white matter hyperintensity burden, instead of using all scans for 

the computation of the white matter hyperintensity map. In this work, we demonstrated the utility of an 

automated tool for assessing image registration quality in clinical scans. This image quality assessment 

step could ultimately assist in the translation of automated neuroimaging pipelines to the clinic. 

© 2020 Elsevier B.V. All rights reserved. 
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1. Introduction 

Image registration has proven a fundamental part of many

processing pipelines in the biomedical imaging field, establishing

spatial correspondence between images and enabling subsequent

group or cohort analyses. However, when using clinical, low res-

olution brain data, image registration can be challenging. E.g. in

acute ischemic stroke populations, high-resolution image acquisi-

tion in the acute disease state is not possible due to clinical time

constraints. Nonetheless, such clinical cohorts offer great amounts

of untapped information due to the large number of samples avail-

able, often in the range of thousands of patients ( Giese et al.,

2017; Courand et al., 2019 ), which can be utilized to unveil spa-

tial patterns of disease burden ( Bilello et al., 2016; Schirmer et al.,

2019b ). Importantly, as clinical images have more variability than

scans acquired primarily for research, they necessitate quality con-

trol steps after registration to ensure that no gross errors oc-

curred in the process. Quantifying the registration quality, utilizing

only intensity-based metrics such as mutual information or cross-

correlation, is often not enough, and in practice registration quality

is assessed using manual ventricle segmentations to evaluate the

overlap between the patient data and the registration target, i.e.

brain template or atlas ( Ou et al., 2014; Dalca et al., 2016; Ganzetti

et al., 2018 ). 

Considerable work has been conducted to generate appropri-

ate brain templates for image registration, using data from healthy

young adults ( Dickie et al., 2017 ) or age appropriate cohorts from

the general population ( Schirmer et al., 2019b ). These templates

can consequently be used for segmentation of brain structures,

but often yields unsatisfactory results in clinical scans. For in-

stance, outlining of the ventricles in such clinical scans is often

done manually, or semi-automatically ( Hussain et al., 2013; Xia

et al., 2004 ). Manually outlining the ventricles is a time intensive

step, and hinders quality assessment in large scale cohorts. Deep

learning techniques have been developed to automatically segment

structures in clinical quality scans, using for instance U-Net ar-

chitectures ( Schirmer et al., 2019a; Nikolov et al., 2018; Guerrero

et al., 2018 ). Given enough training data, these techniques can re-

liably generate accurate, fully automated masks of the structures

of interest. The use of a U-Net architecture has been proposed to

generate automated segmentations of the lateral ventricles alone

( Ghafoorian et al., 2018 ), and recently of the complete ventricular

system ( Atlason et al., 2019; Shao et al., 2019 ), showing promising

results, which can be utilized in automated assessment of image

registration quality. 

Automated registration quality assessment methods can also be

used to improve the registration results in atlas selection meth-

ods. Multi-atlas segmentation has for instance become an increas-

ingly popular segmentation method in neuroimaging pipelines

( Iglesias and Sabuncu, 2015 ). One of its simplest implementa-

tions is to register several atlases pairwise to an image, prop-

agate the labels of the atlases in image space, and choose

the final label for each voxel using majority voting. Probabilis-

tic label fusion strategies have also been proposed, such as

Wang et al. (2013) who proposed to exploit the intensity simi-

larity between atlases and the target image in the neighborhood

of each voxel. Robinson et al. (2019) recently proposed a method

to perform automated quality control of segmentations of car-

diovascular data from the UK biobank. The authors registered a

set of annotated images to a test image with unknown ground

truth. The labels were then warped using the deformation field

from image registration, and the overlap between the warped la-

bels and the predicted segmentation was used to estimated the

segmentation performance. In other words, the segmentation of

the image with unknown ground truth is compared to that of a

multi-atlas segmentation, where smaller difference between seg-
entations are assumed to reflect higher segmentation quality. In-

tead of using the same set of atlases for multi-atlas segmenta-

ion, a most appropriate subset of atlases can also be selected. Re-

ently, Antonelli et al. (2019) proposed for instance to select sub-

ets of atlases for each target image using a genetic selection al-

orithm, and evaluated their method in cardiac and prostate data.

o decrease the computation time of multi-atlas segmentation,

ewey et al. (2017) proposed to add an intermediary registration

tep to a template constructed from the set of the considered at-

ases, using for instance multivariate template construction algo-

ithm. Creating robust registration methods to map clinical scans

o atlases is key to the field of lesion-symptom mapping. For exam-

le, Biesbroek et al. (2013) studied lesion-symptom mapping with

rain lesions, such as white matter hyperintensities and lacunes, in

elation to cognition. 

In this work, we developed a ventricle segmentation deep

earning algorithm based on a 3D U-Net-like architecture to seg-

ent the complete ventricular system in each subjects fluid-

ttenuated inversion recovery (FLAIR) sequence and validated it in

 multi-center, clinical dataset comprising 12 sites. The ventricle

egmentation was then used to assess registration quality by com-

aring it – using the Dice similarity coefficient – to the ventricles

f the atlas propagated to the target image space. Over all brain

egions, due to its very discriminative image intensity values and

ts relatively large size, the ventricular system presents a feature

f the brain that is robust to variations in scanners and FLAIR pro-

ocols, making it a prime candidate for using its segmentation to

ssess registration quality. This automated registration quality as-

essment method can be used not only to flag or discard erroneous

egistrations, but also to select the best registration. As an exam-

le, we proposed to use this automated registration quality assess-

ent method to improve registration quality by designing a multi-

tlas registration (MAR) framework. Instead of directly registering

mages to a single template (general atlas), each image was addi-

ionally registered to five different atlases corresponding to differ-

nt age categories, which in turn have been registered to the gen-

ral atlas. The best atlas was then selected using the automated

egistration quality assessment method, and used as a transitional

egistration step before warping the subject image to the common

pace. Contrary to the above-mentioned multi-atlas segmentation

ethods, the purpose of the proposed MAR method was to im-

rove the results of registration to the common space, and not to

mprove the results of segmentation of brain regions in the tar-

et image. Finally, we used the proposed MAR framework to cre-

te voxelwise maps of white matter hyperintensity (WMH) bur-

en in a set of acute ischemic stroke patients, where Dice coef-

cient thresholds were used to control the quality of registration.

n summary, our main contributions are an algorithm for the seg-

entation of the complete ventricular system in clinical scans, the

valuation of ventricle overlap as registration quality metric, and

 multi-atlas registration framework to improve registration of im-

ges to a common space. 

. Material and methods 

.1. Data 

.1.1. Onsite clinical data 

We utilized data of the Genes Affecting Stroke Risk and Out-

omes Study (GASROS) study ( Zhang et al., 2015 ). Patients ( > 18

ears old) presenting to the Massachusetts General Hospital Emer-

ency Department (ED) between 2003 and 2011 with symptoms

f acute ischemic stroke, were eligible for enrollment. Magnetic

esonance images were acquired within 48 hours of admission

nd only patients with confirmed acute diffusion-weighted imag-

ng lesions on brain MRI scans were included. 1132 patients un-
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erwent the standard acute ischemic stroke protocol on a 1.5T

igna scanner (GE Medical Systems), including T2-weighted FLAIR

maging (TR 50 0 0ms, minimum TE of 62 to 116ms, TI 2200ms,

OV 220-240mm). For each patient, WMH were segmented us-

ng MRIcro software (University of Nottingham School of Psychol-

gy, Nottingham, UK; www.mricro.com ), based on a previously

ublished semi-automated method with high inter-rater reliabil-

ty ( Chen et al., 2006 ). Ventricles were manually segmented by

 single rater in a subset of 300 patients FLAIR images using 3D

licer ( Fedorov et al., 2012 ). Of the 300 scans, 100 were chosen to

niformly sample the age range in the GASROS cohort, 100 were

hosen to span the range of WMH disease burden, and the re-

aining 100 were randomly selected. This set was used for net-

ork training and validation of the automated ventricle segmenta-

ion method. In addition, a test set of 100 patients were selected

o approximately represent the range of ventricular volume in the

atient population. Scans were selected with a semi-automated

ethod that estimates ventricular volume using nonlinear regis-

ration to an atlas. The semi-automated method involved a qual-

ty control step to ensure that the range was uniformly sampled.

hese 100 scans were then segmented by a second rater. 

.1.2. Multi-center clinical data 

The MRI-GENetics Interface Exploration (MRI-GENIE) study is

 large-scale, international, hospital-based collaborative study of

cute ischemic stroke patients ( Giese et al., 2017 ), including FLAIR

ata from 12 sites (7 European, 5 US based), acquired as part of

ach hospitals clinical acute ischemic stroke protocol. For each ac-

uisition site, 12 patients were selected ( Schirmer et al., 2019a )

nd underwent manual ventricle segmentations. Two of the pa-

ients displayed substantial motion artifacts, and were excluded

rom our analysis, forming a total set of N = 142 scans with man-

al brain and ventricle segmentation. This set was used as an ad-

itional test set for the evaluation of the ventricle segmentation

lgorithm and the proposed MAR framework. 

.1.3. ADNI Data 

Part of the data used in the preparation of this article were

lso obtained from the Alzheimers Disease Neuroimaging Initia-

ive (ADNI) database (adni.loni.usc.edu). The ADNI was launched

n 2003 as a public-private partnership, led by Principal Investi-

ator Michael W. Weiner, MD. The primary goal of ADNI has been

o test whether serial magnetic resonance imaging (MRI), positron

mission tomography (PET), other biological markers, and clini-

al and neuropsychological assessment can be combined to mea-

ure the progression of mild cognitive impairment (MCI) and early

lzheimers disease (AD). 

.1.4. Brain atlases 

Using 130 healthy controls from ADNI3 dataset ( Jack Jr et al.,

008 ) (Field strength 3T; 3D FLAIR; TE 119; TR 4800; TI 1650;

.2x1x1mm3; see Appendix B for list of subject IDs), we created

ve FLAIR atlases, each corresponding to a different age category:

nder 70 years old (N = 6 subjects), between 70 and 75 (N =
2), between 75 and 80 (N = 31), between 80 and 85 (N = 39),

nd above 85 (N = 32). The atlases were created using ANTs mul-

ivariate template construction algorithm with default parameters

 Avants et al., 2011 ). Similarly, a general atlas was created by av-

raging the five age-specific atlases, also using using ANTs mul-

ivariate template construction algorithm with default parameters

 Avants et al., 2011 ). All atlases were manually skull stripped and

egistered to MNI space. The resulting image resolution was 1mm3

nd the image size 182x218x182 voxels. Ventricles were manually

egmented in the general atlas. Each of the five age-specific at-

ases was diffeomorphically registered to the general atlas, to al-

ow the propagation of the ventricle segmentation to age-specific
tlases, and to warp the images to the general atlas space in the

AR framework. To assess which atlases were most similar to the

eneral atlas, we computed the mean squared intensity difference

etween the age-specific atlases and the general atlas. 

.2. Automated ventricle segmentation 

Image intensities were rescaled so that the 1st percentile of in-

ensity values (without masking) is equal to 0 and the 99th per-

entile is equal to 1. The full 3D images were passed as input to

 deep learning model. Prior to ventricle segmentation, each FLAIR

mage underwent brain extraction using a dedicated U-Net based

eep learning method ( Schirmer et al., 2019a ) developed and val-

dated in clinical scans. The resulting brain mask was also given

s input to the model. While test data had varying voxel dimen-

ions, training data consisted only of images with image size of

56x256 voxels in axial (inplane) direction, and less than 32 vox-

ls in through plane direction. All images were then padded in z to

ave 32 slices. During inference, we resized images to 256 x 256

 32 voxels using linear interpolation, predicted the correspond-

ng ventricle maps, and resized these maps to the original image

esolution. 

We used a 3D U-Net-like architecture ( Fig. 1 ), based on two up-

down-sampling layers. Each convolution layer had a kernel size of

x3x3 with ReLu activations, and we utilized 2 x 2 x 2 Max-Pooling

or downsampling. To accelerate convergence without overloading

he GPU memory, we added a Batch Normalization layer ( Ioffe and

zegedy, 2015 ) after the features maps with the lowest resolu-

ion (5th convolution layer). Additionally, to improve generaliza-

ion, we added a Dropout layer ( Srivastava et al., 2014 ) before the

ast convolution. The parameters of the network were optimized

ith the Adadelta optimizer ( Zeiler, 2012 ). To improve generali-

ation, we also trained the algorithm with online data augmenta-

ion using random translations < 50 voxels, 3D rotations of maxi-

um 0.2 radian and flipping according to the coronal plane. The

ntensity of the ventricles and of the sulci were also separately

andomized for data augmentation. To artificially increase the in-

ensity of the ventricles, we used the annotations and randomly

dded to the ventricles intensities a maximum of 2 μ, with μ the

ean intensity of the FLAIR scans after percentile normalization.

o artificially modify the intensity of the sulci, we randomly added

etween −2 μ and 2 μ to regions of the images with an intensity

alue lower than 0.25 after percentile normalization. The algorithm

as implemented using the publicly available Keras 2.2.0 library

 Chollet et al., 2015 ) with TensorFlow 1.10 as backend ( Abadi et al.,

016 ). 

The networks outputs were binarized at a threshold of 0.5. To

mprove the segmentation, in the ventricle binary maps, we re-

oved small connected components with a volume smaller than

 manually determined threshold of 5 voxels. 

.3. Registration quality assessment 

All pairwise registrations from image to atlas were performed

sing ANTs SyN nonlinear diffeomorphic registration algorithm

ith default parameters ( Avants et al., 2011 ). Inverse registrations

ere computed to allow the propagation of atlases ventricle seg-

entations to image space. The quality of the registration T x,a of

n image x to an atlas a can be assessed by measuring the over-

ap between the ventricles segmented by the CNN in image space

 V CNN ) and the ventricles of the atlas a ( V a ) propagated to image

pace V x,a = T −1 
x,a (V a ) . We denote this registration quality metric as

 x,a = D (V CNN , V x,a ) , where D is the Dice similarity coefficient. 

Other more conventional metrics – that measure e.g. image

imilarity – could be used instead to assess registration quality.

https://www.mricro.com
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Fig. 1. Architecture of the deep learning ventricle segmentation algorithm. The architecture is similar to that of a shallow 3D U-Net ( Ronneberger et al., 2015 ) with only 104 

feature maps to allow the processing of the full 3D images. 

Fig. 2. Principle of the proposed MAR framework. For each subject, the input image was first registered to each of the atlases a ∈ A , which had been previously registered to 

the general atlas. The ventricles segmented on the general atlas V g are then propagated first to each atlas a, and then to the subject’s image space. The propagated ventricles 

V x,a,g were subsequently compared to V CNN , the subject’s ventricles segmented using the proposed automatic algorithm. Finally, the atlas maximizing the registration quality 

was selected for the intermediary registration step. 
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We assessed this based on the cross-correlation (CC), i.e. the reg-

istration metric itself (ANTS SyN ( Avants et al., 2008; Sarvaiya

et al., 2009; de Groot et al., 2013 )) between the registered image

x and each atlas a such that Q x,a = T x,a (x ) � a, where � denotes the

cross-correlation operation. Prior to the computation of the cross-

correlation, images were rescaled in [0,1] using their minimum and

maximum intensity values. 

2.4. Multi-Atlas registration 

Each scan was registered pairwise to each atlas in A =
a 1 , . . . , a 5 , g , where a i are the age-specific atlases and the g is the

general atlas. For a given scan, the best atlas b was then selected

based on the registration quality metric Q , so that 

b = arg max a ∈ A Q x,a , (1)

with, for the ventricle overlap quality metric, Q x,a = D (V CNN , V x,a,g ) ,

where V x,a,g = T −1 
x,a T 

−1 
a,g (V g ) . If the best atlas was not the general at-

las, the scan uses the intermediate registration target b and is then

warped to the general atlas using the deformation field of the reg-

istration of the intermediary atlas to the general atlas ( Fig. 2 ). 
. Experiments 

.1. Ventricle segmentation 

The ventricle segmentation algorithm was optimized using the

raining/validation set, which was randomly split into 240 train-

ng scans and 60 validation scans to monitor over-fitting. The algo-

ithm was then evaluated on the test set of 100 scans. The exper-

ments with the MAR framework were conducted using the com-

lete GASROS dataset excluding the 300 scans used to optimized

he ventricle segmentation algorithm and 41 scans with strong mo-

ion artifacts, but excluding the 100 scans of the test set for ven-

ricle segmentation, hence resulting in 791 scans. 

We assessed the automatic segmentation of the ventricular sys-

em in the FLAIR sequences based on 11 different metrics. These

etrics included the Dice similarity coefficient (Dice), Jaccard in-

ex (Jaccard), true positive rate (TPR), mutual information (MI), Co-

en’s kappa (KAP), intraclass correlation coefficient (ICC), volumet-

ic similarity (VS), adjusted Rand index (ARI), probabilistic distance

PBD), detection error rate (DER) and outline error rate (OER). VS

as computed as the absolute volume difference divided by the

um of both volumes. ARI is Rand index corrected for chance. Rand

ndex measures similarity between clusters. PDB measures the dis-
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Table 1 

Gain in registration performance comparing the proposed multi-atlas registration framework using either the manual or automated ventricle 

segmentations to compute the registration quality. Results are displayed as mean Dice coefficient of ventricle overlap. The number of scans 

assigned to each age-specific atlas is indicated between brackets. 

GASROS 100 manual GASROS 100 automated MRI-GENIE manual MRI-GENIE automated 

Mean gain dice 0.01 (100) 0.011 (100) 0.010 (142) 0.014 (142) 

Mean gain dice when improvement 0.019 (53) 0.024 (43) 0.016(90) 0.022 (93) 

Under70 0.034 (17) 0.04 (15) 0.036 (18) 0.033 (26) 

70–75 0.019 (19) 0.019 (28) 0.016 (35) 0.019 (59) 

75–80 0.001 (2) (0) 0.004 (8) 0.0005 (1) 

80–85 (0) 0.001 (1) (0) (0) 

Above 85 0.005 (15) 0.006 (3) 0.006 (29) 0.008 (7) 
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ance between fuzzy segmentations. DER measures the disagree-

ent in detecting the same regions, namely the sum of the vol-

mes of regions detected in only one of both segmentations. OER

easures the disagreement in outlining of the regions, namely the

ifference between union and intersection of regions detected in

oth segmentations. A detailed description of the metrics is given

lsewhere ( Taha and Hanbury, 2015; Wack et al., 2012 ). 

PBD, DER, and OER are a measure of dissimilarity, where

maller values represent better agreement. As DER and OER are

ounded metrics, we rescaled them between 0 and 1, and re-

orted 1-DER and 1-OER. In case of PBD (not bounded), we re-

orted 1/(1+PBD). Subsequently, all similarity metrics are bound

etween 0 and 1, where 1 indicates a perfect segmentation. Results

re visualized as radar plots. 2 

.2. Evaluation of the multi-atlas registration framework 

We compared the proposed multi-atlas registration method to

 direct registration to the general atlas and quantified the gain

n registration performance by the difference �b,g = Q x,b − Q x,g ,

here Q represents the Dice coefficient of ventricle overlap. We

omputed Wilcoxon tests on all subjects, in order to evaluate the

fficacy of the proposed MAR framework. Additionally, we inves-

igated the effect of utilizing different registration quality assess-

ent metrics and the dependency of age and ventricle volume on

he selection of the best atlas. 

.3. Spatial maps of WMH burden 

Utilizing the manual WMH segmentations from GASROS, we

enerated an average voxelwise map of WMH burden in template

pace. After using the MAR framework, we selected subjects for

hich registration quality was above a threshold T . Using three

ifferent thresholds T = 0, 0.6, and 0.9, we visually assessed the

uality of WMH maps constructed. 

. Results 

.1. Ventricle segmentation 

The results of evaluating the automated ventricle segmentation

see Fig. 3 ) show good agreement between the manual and auto-

ated ventricle segmentations, with Dice coefficients of 0.89 for

he single-site GASROS dataset and 0.83 for the multi-site MRI-

ENIE dataset. Results of the ventricle segmentation for the MRI-

ENIE data set, stratified by site, are shown in Appendix A . 
2 Github link - https://github.com/mdschirmer/EISRAD 

p  

d  

h  
.2. Multi-atlas registration 

.2.1. Atlas creation 

Fig. 4 shows the age-specific atlases created from the healthy

ontrols from the ADNI dataset. Computing the mean squared in-

ensity difference between the age-specific atlases and the general

tlas revealed that atlas 75–80 was the closest to the general atlas,

nd atlas 80–85 was the most dissimilar. 

.2.2. Gain in registration performance 

The gain in registration performance �b,g is shown for each

ataset in Fig. 5 and Appendix E . We observed age-dependent im-

rovements with increases of ventricle overlap by up to 0.15 Dice

oints. Wilcoxon tests showed that the proposed MAR method

eached a significantly higher registration quality – measured as

entricle overlap – than that of the direct registration to the gen-

ral atlas ( Fig. 6 ) in N = 430 GASROS subjects (54%) and 93 MRI-

ENIE subjects (65%). However, when using cross-correlation in-

tead of ventricles overlap for intermediary atlas selection, the pro-

osed MAR method did not reach a significantly higher registra-

ion quality than that of the direct registration to the general at-

as ( Fig. 6; Appendix C and Appendix D ). As expected, younger

atients with lower ventricle volume were assigned to atlases of

ounger categories ( Fig. 7 ). 

.2.3. Manual versus automated ventricle segmentation 

To assess the validity of using the CNN results as reference for

he registration, we evaluated the difference of results for the MAR

ramework in each dataset when using manually versus automat-

cally segmented ventricles and found no large difference ( Fig. 8

nd Table 1 ). 

.2.4. Spatial WMH maps of WMH burden 

Fig. 9 shows that increasing the threshold of registration quality

rejecting more subjects) reduces, e.g., the erroneous extension of

he WMH into the CSF compartments of the brain. 

. Discussion 

In this paper, we demonstrated the use of a ventricle segmenta-

ion algorithm using clinical FLAIR sequences, for automated regis-

ration quality assessment, and validated the proposed quality as-

essment metric in a multi-atlas registration (MAR) framework. 

The registration quality assessment method compared the ven-

ricles of a subject, segmented with a machine learning algorithm,

o the ventricles of the atlas, propagated to subject space. A ven-

ricle segmentation algorithm that is robust to variations in scan-

ers, sites and image resolutions is consequently a keypoint of its

pplicability. Here, we demonstrated that the proposed algorithm

erformed well in a multi-site scenario, while being trained with

ata from a single site. While, as expected, the algorithm reached a

igher performance for the dataset it was optimized on (GASROS),

https://github.com/mdschirmer/EISRAD


6 F. Dubost, M.d. Bruijne and M. Nardin et al. / Medical Image Analysis 63 (2020) 101698 

Fig. 3. Comparison of automated and manual ventricle segmentations in A) GASROS (N = 100; left) and B) MRI-GENIE (N = 142; right). The reported metrics are Dice 

coefficient (Dice), Jaccard index (Jaccard), true positive rate (TPR), volumetric similarity (VS), Mutual information (MI), Adjusted Rand Index (ARI), intraclass correlation 

coefficient (ICC), probabilistic distance (PBD), Cohens kappa (KAP), Detection Error Rate (DER) and Outline Error Rate (OER). The solid line is based on the median of each 

measure, while the ribbon represents the interquartile range. 

Fig. 4. Age-specific atlases and the general atlas registered to MNI space. 

Fig. 5. Gain in registration performance measured as ventricle overlap by using the proposed MAR method in comparison to a direct pairwise registration to the general 

atlas g for each dataset (Left: GASROS; Right: MRI-GENIE). A/C: registration quality histograms using either direct registration to the general atlas (pink) or the MAR (green; 

improvement of registration quality). The overlap of both methods is shown in purple. B/D: Gain in registration quality �b,g . Scatterplots are also available in Appendix Ap- 

pendix F . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 6. Comparison of the proposed MAR with a direct registration to the general atlas. Instead of the proposed selection strategy for the intermediary atlas (ventricle Dice), 

we also experimented using the more standard selection criterion: cross-correlation (CC), computed after the elastic registration and normalization of intensity values. ∗∗∗∗

indicates a p-value lower than 0.0 0 01 for the Wilcoxon test, and n.s. Indicates a non significant difference. 

Fig. 7. Effect of age and ventricle volume on the selection of the atlases using ventricle overlap as registration quality metric. Violin plots show the distribution of the 

subjects’ age – and ventricle volume – according to the best atlas the subjects were assigned to in the MAR framework. A vertical line indicates that only n = 1 subject has 

been assigned to the template. 

Fig. 8. Comparison of multi-atlas registration using automated (blue) and manual (orange) segmentation of the ventricles in subject space. The number of scans assigned to 

each atlas is indicated on the right of each plot for both automated and manual ventricle segmentations. (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 
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Fig. 9. White matter hyperintensity (WMH) burden overlayed with the general atlas. Rows correspond to different thresholds T for the quality of the registration measure Q 

used to create WMH maps: from top to bottom: Q ≥ 0 (all images = 791 images), Q > 0.6 (748 images), and Q > 0.9 (83 images). The columns correspond to two different 

brain slices in the axial plane. On the left of each column is the full image and on the right a zoomed in version of the region highlighted in pink. Red arrows indicate 

regions with a visible improvement in WMH maps. 
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the performance dropped by less than 6 percentage points of Dice

coefficient when used on multi-site data. Importantly, the segmen-

tation method generalized well to the other, multi-site data by

designing appropriate data augmentation procedures, and without

employing advanced transfer learning algorithms. Using manually

or automatically segmented ventricles using the proposed deep

learning algorithm, led to similar results with the MAR framework

in each dataset ( 8 and 1 ), with a difference in mean gain in Dice

coefficient of 0.001 in GASROS dataset, and 0.004 in the MRI-GENIE

dataset. The largest differences were that: (1) when using the au-

tomated segmentation, more scans were assigned to atlas of age

range 70–75 instead of atlas under 70 or the general atlas, and (2)

when using the manual segmentation, more scans were assigned

to atlas of age range above 85 instead of the general atlas. 

Klein et al. (2009) showed that for multiple registration algo-

rithms (including ANTS) the registration error of the ventricles cor-

relates with registration errors in other regions. Manually anno-

tated landmarks describing brain structures in the atlas could help

to monitor more globally the registration quality than using the

ventricles alone. However, automatically detecting such landmarks

in clinical data remains a difficult task, and might lead to more er-

roneous cases, in contrast to segmenting a large, reliable structure,

such as the ventricles. However, our framework can be extended
o use multiple segmentations such as grey and white matter seg-

entations in the future. 

We used the automated registration quality assessment method

o design a multi-atlas registration (MAR) framework for improving

egistration quality. Instead of being directly and only registered to

 general atlas, scans were first registered to atlases correspond-

ng to several age categories. The best of these atlases was then

hosen using the registration quality assessment method, and reg-

stration to the selected atlas was used as an intermediary regis-

ration step. In our dataset, using the MAR framework with ven-

ricle overlap significantly improved the registration quality. Pa-

ients were often assigned to an intermediate atlas that was closer

o their chronological age. However, we observed a shift, where,

n average, subjects were matched to age-specific atlases of an

lder age category than their chronological age. This most prob-

bly resulted from the specific cohort in our analyses: all sub-

ects had a prior acute ischemic event, which may reflect brains

ith increased biological age. This is further supported by stud-

es which suggested that biological age, in contrast to chronolog-

cal age, can play a key role in susceptibility to disease ( Wang

t al., 2019 ).This suggests also that selecting the age-specific at-

as using the patients chronological age would be a suboptimal

trategy. 
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We further observed a positive correlation between ventricle

olumes and the age category of the atlas the scans were assigned

o. This relationship was expected, considering that age is posi-

ively correlated with ventricles volume in the general population

 Walhovd et al., 2011 ), which can also be seen on the age-specific

tlases themselves ( Fig. 4 ). The age-specific atlases also showed ex-

ected behavior of increased WMH volume and cortical atrophy

ith increasing age ( Earnest et al., 1979 ). In all experiments, only

 few scans were assigned to the atlases of age category 75–80

nd 80–85. Computing the mean squared intensity difference be-

ween the age-specific atlases and the general atlas revealed that

tlas 75–80 was the closest to the general atlas, and atlas 80–85

as the most dissimilar. Consequently, scans most similar to atlas

5–80 were more likely to be assigned to the general atlas instead.

Other researchers have successfully used age-specific at-

ases ( Sanchez et al., 2012; Fillmore et al., 2015; Liang et al.,

015; Schirmer et al., 2019b; 2019a ). Liang et al. (2015) pro-

osed to construct age-specific templates, and observed an im-

rovement for hippocampi segmentation. And Fillmore et al.

illmore et al. (2015) observed an improvement in segmentation

f white matter, gray matter and cerebrospinal fluid using an age-

ppropriate brain template. It is often impossible to find a single

tlas, which works best for studies across the entire lifespan. In-

tead, using multiple age-specific atlases allows a more accurate

escription of the lifespan and can improve registration quality.

n this article, we utilized five age groups, which already demon-

trated improvement in overall registration quality. By using even

ore atlases, i.e. additional or smaller spaced age groups, could

ead to further improvements. Intermediary registration to a tem-

late has also been used to accelerate multi-atlas segmentation

 Dewey et al., 2017 ), or to improve registration from one image

odality to another. For instance, Parthasarathy et al. (2011) used

 full-volume ultrasound image as intermediary image for the reg-

stration of live-3D ultrasound to MRI. Later, Roy et al. (2014) used

n synthesized CT image as intermediary image for the registra-

ion from MRI to CT. Groupwise registration ( Joshi et al., 2004;

letcher et al., 2009 ) could be another strategy to register all scans

f a dataset to the same space. No template image needs to be se-

ected in advance, and transformation fields are estimated simulta-

eously for all scans. One of the main disadvantages of groupwise

egistration is that the initial common space is estimated as the

ean of all scans in the dataset. This mean image can be fuzzy

nd not provide enough guidance for the iterative optimization

rocess ( Wu et al., 2010 ). Aligning the images to the MNI tem-

late instead of only aligning them to the general atlas created

rom ADNI healthy controls might be of interest, for example, to

ompare with other datasets already registered to the MNI tem-

late. For this purpose, a registration step to MNI template could

e added as a last step of the MAR framework, after the regis-

ration to the general atlas. The general atlas would then need to

e registered to the MNI template. This approach would guarantee

 smoother and more controlled transformation than registering

he age-specific atlases directly to the MNI template, and would

rovide a more precise monitoring of potential registration errors:

entricle overlap could be computed both when registering to the

eneral atlas and when subsequently registering the MNI template,

nd errors in the pipeline could be more easily identified. 

The proposed MAR framework using ventricle overlap could

e categorized as a feature-based registration method. Segmen-

ations in feature-based registration methods have already been

sed as initialization ( Vemuri et al., 2003 ), or have been optimized

ointly with an intensity similarity metric for registration ( Yezzi

t al., 2003; Pohl et al., 2006; Chen et al., 2010 ). More recently,

alakrishnan et al. (2019) proposed to use a deep learning registra-

ion approach where segmentations of anatomical structures can

e used as auxiliary data during the optimization. This would al-
ow to include the ventricle segmentation in the optimization of

he registration, instead of the proposed MAR framework. How-

ver, to date, utilizing auxiliary data for registration has not been

ested in clinical scans, which are known to be substantially more

hallenging to segment and register. With the presented ventricle

egmentation, and the segmentation of other structures and the

ntire brain, the extension of such approaches to clinical scans

ecomes more feasible and is of key interest for future studies.

n Appendix Appendix G , we compared a registration method in

hich ventricle segmentation was added as auxiliary objective

ith equal weight during registration to the proposed MAR and,

s expected, obtained higher ventricles overlap. However, by uti-

izing the ventricle segmentation for registration, we cannot uti-

ize it anymore for objectively assessing registration quality. Addi-

ionally, Balakrishnan et al. (2019) have done similar experiments

ith brain registration and observed that when using the overlap

f a single structure as auxiliary objective, the overlap of the other

rain structures stayed either the same or even decreased when

sing larger weight for the auxiliary objective. In addition to, or in-

tead of, using the ventricles to assess registration quality, it might

lso be interesting to inspect subcortical structures on T1-weighted

RI sequence, and attempt to exploit features based on the inten-

ity difference between white and gray matter in, for example, the

asal ganglia. 

In our application, we demonstrated that it becomes feasible to

utomatically select only scans with high registration quality, lead-

ng to more globally accurate – but also possibly more noisy as

omputed from a smaller set – maps of WMH burden. Using auto-

ated assessment of registration quality to compute more accurate

patial patterns of disease could further help to relate spatial infor-

ation to global phenotypes such as stroke severity or hyperten-

ion. For instance research has been done on how WMH distribu-

ion differs between patients with lobar intracerebral hemorrhage

nd healthy elderly ( Zhu et al., 2012 ), or on differences between

eep and periventricular WMH in relation to stroke ( Buyck et al.,

009 ). However, discarding scans with a lower registration qual-

ty might also introduce a bias if the quality of the registration

s related to one of the studied determinants or outcomes. Alter-

atively, a more rigorous quality control procedure might also be

riggered for those scans. 

There are limitations to this study. Our proposed method re-

uires reliable automated segmentation of a key structure in the

mage, which can subsequently serves as a reference. This can be

hallenging with smaller structures in the image. Here, we focused

n the ventricular system, which represents a structure that is rel-

tively easy to segment consistently across subjects. While such a

iscriminative structure might not appear in every body part or

ith every imaging modality, further methodological advances in

mage segmentation will improve the generalizability of the pro-

osed framework. Examples of structures that are suited to the

roposed method could be large blood vessels in magnetic reso-

ance angiography, or fetus in fetal MRI. The premise of our reg-

stration quality assessment lies in ventricles being visible on the

linical images. In particular in stroke cases, mass effects can al-

er the appearance of the ventricles, sometimes rendering the lat-

ral ventricles invisible in the image. Additionally, the posterior

orns of the ventricles may be masked due to the low resolution

f the acquired clinical scans. If ventricles cannot be identified on

he image, our proposed metrics may indicate insufficient regis-

ration quality. However, this assessment can be used to flag this

ubset of the registered scans as potentially erroneous, which can

hen be manually assessed by an expert rater rather than being

ompletely rejected from the analysis. If the registration is erro-

eous, the third and fourth ventricles in particular are less likely

o overlap with the atlas, reducing the probability of high dice for

ncorrect registration. We observed some outliers with low ventri-
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cle overlap between the automated and manual ventricle segmen-

tation. The majority of these outliers – for instance 2 out of 100

scans in GASROS dataset – were scans with substantial motion ar-

tifacts, where the segmentation of ventricles was challenging even

for human raters. Such scans are usually excluded from most neu-

roimaging pipelines. In addition, in some sites of the MRI-GENIE

dataset, sulci were sometimes misclassified as ventricles. Another

limitation is that the proposed MAR framework also multiplies the

computation time by the number of atlases used: in our case, the

registration is six times longer. However, each registration can be

run in parallel, and in cases where immediate results are not nec-

essary, this approach can help improve registration quality. Addi-

tionally, with the recent development of deep-learning based reg-

istration frameworks ( Balakrishnan et al., 2019 ), time concerns may

become negligible. 

Instead of using segmentation to perform automated quality

control of registration, Robinson et al. (2019) proposed to use reg-

istration to perform quality control of segmentation. This assumes

that the registration is more robust to the variations present in

the dataset than the segmentation. Using segmentation to per-

form automated quality control of registration assumes the oppo-

site. Whether segmentation or registration can be considered more

robust depends on the region of interest, imaging modality, and

image resolution. The full ventricular system in the brain has a

complex shape with substantial inter-subject variability due to, for

example, brain atrophy and/or pathological processes. This makes

the registration difficult when the shape of subjects ventricles de-

viate from the expected ventricle shape. Conversely, image inten-

sity on FLAIR-weighted MRI is a substantially more discriminative

feature than shape. The high contrast between intensities inside

and outside the ventricles is present in all subjects, scanner and

FLAIR protocols. Segmentation of the ventricular system can there-

fore be expected to be more robust than registration. In contrast

the structures composing the heart, as seen on MRI, have a simple

ovoid shape with similar image intensities, making registration ap-

proaches more reliable as a reference. The other key aspect is that

registration of clinical scans to templates is difficult and remains

an open research question. Registration could potentially be more

reliable if we had a more homogeneous, high-resolution dataset

such a the UK-biobank, as Robinson et al. (2019) used in their anal-

yses. 

Strengths of our work include segmentation of the four ven-

tricles in clinical scans evaluated in multi-center data and more

than 10 0 0 scans. We introduced a multi-atlas registration frame-

work based on this segmentation algorithm, and employed it to

compute more accurate maps of WMH burden. 

No single registration tool, or set of registration parameters,

will perform best on all types of image qualities or sequences. By

implementing an automated registration assessment step in large

scale image analyses, it becomes feasible to test multiple regis-

tration pipelines and select the registration with the best perfor-

mance. This can increase the number successful registrations, and

potentially increase the sample size of a study without the need

for time intensive manual quality assessment. 
In this work, we demonstrated the utility of an automated tool

or assessing image registration quality in clinical scans. Impor-

antly, in addition to extracting an additional phenotype from clin-

cal scans – namely the ventricle volume – this image quality as-

essment step can be implemented in large-scale, automated pro-

essing pipelines of clinical MRI data, increasing the utility of such

ipelines and offering im proved quality of subsequent analysis, ul-

imately assisting in the translation of such pipelines to the clinic. 
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A RI-GENIE. The reported metrics are Dice coefficient (Dice), Jaccard 

i S), Mutual information (MI), Adjusted Rand Index (ARI), intraclass 

c s kappa (KAP), Detection Error Rate (DER) and Outline Error Rate 

(

ppendix A. Ventricle segmentation results for the 12 sites of M

ndex (Jaccard), true positive rate (TPR), volumetric similarity (V

orrelation coefficient (ICC), probabilistic distance (PBD), Cohen’

OER). 
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 age-specific atlases. 

7_S_6120, 029_S_4384

19_S_4367, 070_S_4856, 009_S_4388, 100_S_4469,
37_S_4520, 127_S_4604, 037_S_4028, 129_S_4369,
24_S_4084, 135_S_4598

16_S_4951, 099_S_4076, 006_S_4357, 014_S_4576,
21_S_4335, 018_S_4400, 041_S_4427, 003_S_4288,
07_S_4488, 021_S_4276, 006_S_4485, 082_S_4428,
07_S_4637, 141_S_6061, 041_S_4200

18_S_4313, 019_S_4835, 002_S_1280, 032_S_0677,
68_S_0210, 141_S_0767, 007_S_1222, 123_S_0106
09_S_0751, 033_S_0734, 002_S_4213, 068_S_0127
06_S_0731, 033_S_1098, 941_S_4100, 123_S_0072
18_S_4399, 941_S_4376, 011_S_0021

14_S_0416, 023_S_0031, 130_S_4343, 037_S_4071,
05_S_0610, 035_S_0156, 137_S_4466, 037_S_0454
33_S_4176, 126_S_0605, 002_S_0413, 126_S_0680
33_S_4179, 100_S_0069, 023_S_1190, 021_S_4254

osed multi-atlas registration method with ventricles overlap 

n. Left: GASROS. Right: MRI-GENIE. The registration quality with the 

gistration quality with the proposed multi-atlas registration 

he best atlas Q x,bcc is in pink; the overlay of both is purple. 

e proposed multi-atlas registration method with ventricles overlap 

y atlas is in blue. 

C D

MRI-GENIE

,bcc . Sample size is indicated in brackets. 

GASROS MRI-GENIE 

0.011 (791) 0.014 (142) 

ment 0.018 (468) 0.021 (98) 
Appendix B. List of ADNI 3 IDs used for the computation of the

<70 :
23_S_4448, 128_S_4607, 141_S_6008, 014_S_6076, 00

70−75 :
068_S_4340, 031_S_4021, 094_S_4649, 003_S_4644, 0
135_S_4446, 068_S_4424, 116_S_4453, 016_S_4952, 1
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Appendix C. Gain in registration performance by using the prop

instead of the more standard cross-correlation for atlas selectio

proposed multi-atlas registration method Q x,b is in green; the re

method using cross-correlation instead ventricle Dice to select t

�b,bcc = Q x,b − Q x,bcc , the gain in registration quality by using th

instead of cross-correlation for the selection of the intermediar
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Appendix D. Gain in registration performance �b,bcc = Q x,b − Q x
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